MONEYBaRL: Exploiting pitcher decision-making using Reinforcement Learning
نویسندگان
چکیده
This manuscript uses machine learning techniques to exploit baseball pitchers’ decision making, so-called “Baseball IQ,” by modeling the at-bat information, pitch selection and counts, as a Markov Decision Process (MDP). Each state of the MDP models the pitcher’s current pitch selection in a Markovian fashion, conditional on the information immediately prior to making the current pitch. This includes the count prior to the previous pitch, his ensuing pitch selection, the batter’s ensuing action and the result of the pitch. The necessary Markovian probabilities can be estimated by the relevant observed conditional proportions in MLB pitch-by-pitch game data. These probabilities could be pitcher-specific, using only the data from one pitcher, or general, using the data from a collection of pitchers. Optimal batting strategies against these estimated conditional distributions of pitch selection can be ascertained by Value Iteration. Optimal batting strategies against a pitcher-specific conditional distribution can be contrasted to those calculated from the general conditional distributions associated with a collection of pitchers. In this manuscript, a single season of MLB data is used to calculate the conditional distributions to find optimal pitcher-specific and general (against a collection of pitchers) batting strategies. These strategies are subsequently evaluated by conditional distributions calculated from a different season for the same pitchers. Thus, the batting strategies are conceptually tested via a collection of simulated games, a “mock season,” governed by distributions not used to create the strategies. (Simulation is not needed, as exact calculations are available.) Instances where the pitcher-specific batting strategy outperforms the general batting strategy suggests that the pitcher is exploitable— knowledge of the conditional distributions of their pitch-making decision process in a different season yielded a strategy that worked better in a new season than a general batting strategy built on a
منابع مشابه
Learning to Factor Policies and Action-Value Functions: Factored Action Space Representations for Deep Reinforcement learning
Deep Reinforcement Learning (DRL) methods have performed well in an increasing numbering of high-dimensional visual decision making domains. Among all such visual decision making problems, those with discrete action spaces often tend to have underlying compositional structure in the said action space. Such action spaces often contain actions such as go left, go up as well as go diagonally up an...
متن کاملA Bayesian Approach to Multiagent Reinforcement Learning
A Bayesian Approach to Multiagent Reinforcement Learning and Coalition Formation under Uncertainty Georgios Chalkiadakis Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2007 Sequential decision making under uncertainty is always a challenge for autonomous agents populating a multiagent environment, since their behaviour is inevitably influenced by the behaviou...
متن کاملErrata Preface Recent Advances in Hierarchical Reinforcement Learning
Decision Making, Guest Edited by Xi-Ren Cao. The Publisher offers an apology for printing an incorrect version of the paper in the special issue and renders this paper as the true and correct paper. Abstract. Reinforcement learning is bedeviled by the curse of dimensionality: the number of parameters to be learned grows exponentially with the size of any compact encoding of a state. Recent atte...
متن کاملInformed Exploration: A Satisficing Approach to Q-learning
In the design of robots and automated systems, it is often desirable to endow decision-making agents with an ability to perform self-governed learning. Since many environments produce situations that have not been anticipated, even by the most clever designers, an agent must be endowed with a flexibility to explore options and decide issues that extend beyond rote execution of designer commands...
متن کاملOutsourcing or Insourcing of Transportation System Evaluation Using Intelligent Agents Approach
Nowadays, outsourcing is viewed as a trade strategy and organizations tend to adopt new strategies to achieve competitive advantages in the current world of business. focusing on main copmpetencies, and transferring most of activities to outside resources of organization( outsourcing) is one such strategy is. In this paper, we aim to decide on decision maker agent of transportation system, by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.8392 شماره
صفحات -
تاریخ انتشار 2014